

Ron Larson

BIOLOGY AND LIFE SCIENCES

Age distribution vector, 378, 391, 392, 395
Age progression software, 180
Age transition matrix, 378, 391, 392, 395
Agriculture, 37, 50
Cosmetic surgery results simulation, 180
Duchenne muscular dystrophy, 365
Galloping speeds of animals, 276
Genetics, 365
Health care expenditures, 146
Heart rhythm analysis, 255
Hemophilia A, 365
Hereditary baldness, 365
Nutrition, 11
Population
of deer, 37
of laboratory mice, 91
of rabbits, 379
of sharks, 396
of small fish, 396
Population age and growth over time, 331
Population genetics, 365
Population growth, 378, 379, 391, 392, 395, 396, 398
Predator-prey relationship, 396
Red-green color blindness, 365
Reproduction rates of deer, 103
Sex-linked inheritance, 365
Spread of a virus, 91, 93
Vitamin C content, 11
Wound healing simulation, 180
X-linked inheritance, 365

BUSINESS AND ECONOMICS

Airplane allocation, 91
Borrowing money, 23
Demand, for a rechargeable power drill, 103
Demand matrix, external, 98
Economic system, 97, 98 of a small community, 103
Finance, 23
Fundraising, 92
Gasoline sales, 105
Industrial system, 102, 107
Input-output matrix, 97
Leontief input-output model(s), 97, 98, 103
Major League Baseball salaries, 107
Manufacturing
labor and material costs, 105
models and prices, 150
production levels, 51, 105
Net profit, Microsoft, 32
Output matrix, 98

Petroleum production, 292
Profit, from crops, 50
Purchase of a product, 91
Revenue
fast-food stand, 242
General Dynamics Corporation, 266, 276
Google, Inc., 291
telecommunications company, 242
software publishers, 143
Sales, 37
concession area, 42
stocks, 92
Wal-Mart, 32
Sales promotion, 106
Satellite television service, 85, 86, 147
Software publishing, 143

ENGINEERING AND TECHNOLOGY

Aircraft design, 79
Circuit design, 322
Computer graphics, 338
Computer monitors, 190
Control system, 314
Controllability matrix, 314
Cryptography, 94-96, 102, 107
Data encryption, 94
Decoding a message, 96, 102, 107
Digital signal processing, 172
Electrical network analysis, 30, 31, 34, 37, 150
Electronic equipment, 190
Encoding a message, 95, 102, 107
Encryption key, 94
Engineering and control, 130
Error checking
digit, 200
matrix, 200
Feed horn, 223
Global Positioning System, 16
Google's Page Rank algorithm, 86
Image morphing and warping, 180
Information retrieval, 58
Internet search engine, 58
Ladder network, 322
Locating lost vessels at sea, 16
Movie special effects, 180
Network analysis, 29-34, 37
Radar, 172
Sampling, 172
Satellite dish, 223
Smart phones, 190
Televisions, 190
Wireless communications, 172

MATHEMATICS AND GEOMETRY

Adjoint of a matrix, 134, 135, 142, 146, 150
Collinear points in the $x y$-plane, 139, 143
Conic section(s), 226, 229
general equation, 141
rotation of axes, 221-224, 226, 229, 383-385, 392, 395
Constrained optimization, 389, 390, 392, 395
Contraction in R^{2}, 337, 341, 342
Coplanar points in space, 140, 143
Cramer's Rule, 130, 136, 137, 142, 143, 146
Cross product of two vectors, 277-280, 288, 289, 294
Differential equation(s)
linear, 218, 225, 226, 229 second order, 164 system of first order, 354, 380, 381, 391, 392, 395, 396, 398
Expansion in $R^{2}, 337,341,342,345$
Fibonacci sequence, 396
Fourier approximation(s), 285-287, 289, 292
Geometry of linear transformations in R^{2}, 336-338, 341, 342, 345
Hessian matrix, 375
Jacobian, 145
Lagrange multiplier, 34
Laplace transform, 130
Least squares approximation(s), 281-284, 289
linear, 282, 289, 292
quadratic, 283, 289, 292
Linear programming, 47
Magnification in $R^{2}, 341,342$
Mathematical modeling, 273, 274, 276
Parabola passing through three points, 150
Partial fraction decomposition, 34, 37
Polynomial curve fitting, 25-28, 32, 34, 37
Quadratic form(s), 382-388, 392, 395, 398
Quadric surface, rotation of, 388, 392
Reflection in $R^{2}, 336,341,342,345,346$
Relative maxima and minima, 375
Rotation
in $R^{2}, 303,343,393,397$
in $R^{3}, 339,340,342,345$
Second Partials Test for relative extrema, 375
Shear in $R^{2}, 337,338,341,342,345$
Taylor polynomial of degree 1, 282
Three-point form of the equation of a plane, 141, 143, 146
Translation in $R^{2}, 308,343$
Triple scalar product, 288
Two-point form of the equation of a line, $139,143,146,150$
Unit circle, 253
Wronskian, 219, 225, 226, 229

PHYSICAL SCIENCES

Acoustical noise levels, 28
Airplane speed, 11
Area
of a parallelogram using cross product, $279,280,288,294$
of a triangle
using cross product, 289
using determinants, 138, 142, 146, 150
Astronomy, 27, 274
Balancing a chemical equation, 4
Beam deflection, 64, 72
Chemical
changing state, 91
mixture, 37
reaction, 4
Comet landing, 141
Computational fluid dynamics, 79
Crystallography, 213
Degree of freedom, 164
Diffusion, 354
Dynamical systems, 396
Earthquake monitoring, 16
Electric and magnetic flux, 240
Flexibility matrix, 64, 72
Force
matrix, 72
to pull an object up a ramp, 157
Geophysics, 172
Grayscale, 190
Hooke's Law, 64
Kepler's First Law of Planetary Motion, 141
Kirchhoff's Laws, 30, 322
Lattice of a crystal, 213
Mass-spring system, 164, 167
Mean distance from the sun, 27, 274
Natural frequency, 164

Newton's Second Law of Motion, 164
Ohm's Law, 322
Pendulum, 225
Planetary periods, 27, 274
Primary additive colors, 190
RGB color model, 190
Stiffness matrix, 64, 72
Temperature, 34
Torque, 277
Traffic flow, 28, 33
Undamped system, 164
Unit cell, 213
end-centered monoclinic, 213
Vertical motion, 37
Volume
of a parallelepiped, 288, 289, 292
of a tetrahedron, 114, 140, 143
Water flow, 33
Wind energy consumption, 103
Work, 248

SOCIAL SCIENCES AND DEMOGRAPHICS

Caribbean Cruise, 106
Cellular phone subscribers, 107
Consumer preference model, 85, 86, 92, 147
Final grades, 105
Grade distribution, 92
Master's degrees awarded, 276
Politics, voting apportionment, 51
Population
of consumers, 91
regions of the United States, 51
of smokers and nonsmokers, 91
United States, 32
world, 273
Population migration, 106

Smokers and nonsmokers, 91
Sports
activities, 91
Super Bowl I, 36
Television watching, 91
Test scores, 108

STATISTICS AND PROBABILITY

Canonical regression analysis, 304
Least squares regression analysis, 99-101, 103, 107, 265, 271-276
cubic polynomial, 276
line, 100, 103, 107, 271, 274, 276, 296
quadratic polynomial, 273, 276
Leslie matrix, 331, 378
Markov chain, 85, 86, 92, 93, 106
absorbing, 89, 90, 92, 93, 106
Multiple regression analysis, 304
Multivariate statistics, 304
State matrix, 85, 106, 147, 331
Steady state probability vector, 386
Stochastic matrices, 84-86, 91-93, 106, 331

MISCELLANEOUS

Architecture, 388
Catedral Metropolitana Nossa Senhora Aparecida, 388
Chess tournament, 93
Classified documents, 106
Determining directions, 16
Dominoes, A2
Flight crew scheduling, 47
Sudoku, 120
Tips, 23
U.S. Postal Service, 200

ZIP + 4 barcode, 200

Elementary Linear Algebra 8e Metric Version

Ron Larson
The Pennsylvania State University
The Behrend College

Elementary Linear Algebra, Eighth Edition, Metric Version

Ron Larson
Metric Version Prepared by Larson Texts, Inc.
International Product Director, Global Editions: Timothy L. Anderson
International Services Specialist: Collette Allen
International Markets Coordinator: Tori Sitcawich
Product Assistant: Teresa Versaggi
Director, Production: Samantha Ross Miller
Content Project Manager: Rebecca Donahue
Production Service/Compositor: Larson Texts, Inc.
Senior Art Director: Vernon Boes
Cover Designer: Denise Davidson
Cover Image: qui jun peng/Shutterstock.com Intellectual Property Analyst: Brittani Morgan Manager, Global IP Integration: Eleanor Rummer Manufacturing Planner: Doug Bertke

© 2017 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means except as permitted by U.S. copyright law, without the prior written permission of the copyright owner.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be e-mailed to permissionrequest@cengage.com.

ISBN: 978-1-337-55621-7

Cengage Learning International Offices

Asia

www.cengageasia.com
tel: (65) 64101200
Brazil
www.cengage.com.br
tel: (55) 1136659900
Latin America
www.cengage.com/mx
tel: (52) 5515006000

Australia/New Zealand www.cengage.com.au tel: (61) 396854111

India

www.cengage.co.in
tel: (91) 1143641111

UK/Europe/Middle East/

 Africawww.cengage.co.uk tel: (44) ○ 1264332424

Represented in Canada by Nelson Education, Ltd.
tel: (416) 7529100 / (800) 6680671
www.nelson.com

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at www.cengage.com/global.

For product infomration: www.cengage.com/international Visit your local office: www.cengage.com/global Visit our corporate office: www.cengage.com

QR is a registered trademark of Denso Wave Incorporated

Contents

1 Systems of Linear Equations 1
1.1 Introduction to Systems of Linear Equations 2
1.2 Gaussian Elimination and Gauss-Jordan Elimination 13
1.3 Applications of Systems of Linear Equations 25
Review Exercises 35
Project 1 Graphing Linear Equations 38
Project 2 Underdetermined and Overdetermined Systems 38
2 Matrices 39
2.1 Operations with Matrices 40
2.2 Properties of Matrix Operations 52
2.3 The Inverse of a Matrix 62
2.4 Elementary Matrices 74
2.5 Markov Chains 84
2.6 More Applications of Matrix Operations 94
Review Exercises 104
Project 1 Exploring Matrix Multiplication 108
Project 2 Nilpotent Matrices 108
3 Determinants 109
3.1 The Determinant of a Matrix 110
3.2 Determinants and Elementary Operations 118
3.3 Properties of Determinants 126
3.4 Applications of Determinants 134
Review Exercises 144
Project 1 Stochastic Matrices 147
Project 2 The Cayley-Hamilton Theorem 147
Cumulative Test for Chapters 1-3 149
4 Vector Spaces 151
4.1 Vectors in $\boldsymbol{R}^{\boldsymbol{n}}$ 152
4.2 Vector Spaces 161
4.3 Subspaces of Vector Spaces 168
4.4 Spanning Sets and Linear Independence 175
4.5 Basis and Dimension 186
4.6 Rank of a Matrix and Systems of Linear Equations 195
4.7 Coordinates and Change of Basis 208
4.8 Applications of Vector Spaces 218
Review Exercises 227
Project 1 Solutions of Linear Systems 230
Project 2 Direct Sum 230
5 Inner Product Spaces 231
5.1 Length and Dot Product in $\boldsymbol{R}^{\boldsymbol{n}}$ 232
5.2 Inner Product Spaces 243
5.3 Orthonormal Bases: Gram-Schmidt Process 254
5.4 Mathematical Models and Least Squares Analysis 265
5.5 Applications of Inner Product Spaces 277
Review Exercises 290
Project 1 The QR-Factorization 293
Project 2 Orthogonal Matrices and Change of Basis 294
Cumulative Test for Chapters 4 and 5 295
6 Linear Transformations 297
6.1 Introduction to Linear Transformations 298
6.2 The Kernel and Range of a Linear Transformation 309
6.3 Matrices for Linear Transformations 320
6.4 Transition Matrices and Similarity 330
6.5 Applications of Linear Transformations 336
Review Exercises 343
Project 1 Reflections in R^{2} (I) 346
Project 2 Reflections in R^{2} (II) 346
7 Eigenvalues and Eigenvectors 347
7.1 Eigenvalues and Eigenvectors 348
7.2 Diagonalization 359
7.3 Symmetric Matrices and Orthogonal Diagonalization 368
7.4 Applications of Eigenvalues and Eigenvectors 378
Review Exercises 393
Project 1 Population Growth and Dynamical Systems (I) 396
Project 2 The Fibonacci Sequence 396
Cumulative Test for Chapters 6 and 7 397
8 Complex Vector Spaces (online)*
8.1 Complex Numbers
8.2 Conjugates and Division of Complex Numbers
8.3 Polar Form and DeMoivre's Theorem
8.4 Complex Vector Spaces and Inner Products
8.5 Unitary and Hermitian MatricesReview Exercises
Project 1 The Mandelbrot Set
Project 2 Population Growth and Dynamical Systems (II)
9 Linear Programming (online)*
9.1 Systems of Linear Inequalities
9.2 Linear Programming Involving Two Variables
9.3 The Simplex Method: Maximization
9.4 The Simplex Method: Minimization
9.5 The Simplex Method: Mixed Constraints Review Exercises
Project 1 Beach Sand Replenishment (I)Project 2 Beach Sand Replenishment (II)
10 Numerical Methods (online)*
10.1 Gaussian Elimination with Partial Pivoting
10.2 Iterative Methods for Solving Linear Systems
10.3 Power Method for Approximating Eigenvalues
10.4 Applications of Numerical Methods
Review Exercises
Project 1 The Successive Over-Relaxation (SOR) Method Project 2 United States Population
Appendix A1
Mathematical Induction and Other Forms of Proofs
Answers to Odd-Numbered Exercises and Tests A7
Index A41
Technology Guide*
*Available online at CengageBrain.com.

Preface

Welcome to the International Metric Version of Elementary Linear Algebra, Eighth Edition. For this metric version, the units of measurement used in most of the examples and exercises have been changed from U.S. Customary units to metric units. I did not convert problems that are specific to U.S. Customary units, such as dimensions of a baseball field or U.S. postal rates. As with all editions, I have been able to incorporate many useful comments from you, our user. And while much has changed in this revision, you will still find what you expect-a pedagogically sound, mathematically precise, and comprehensive textbook. Additionally, I am pleased and excited to offer you something brand new- a companion website at LarsonLinearAlgebra.com. My goal for every edition of this textbook is to provide students with the tools that they need to master linear algebra. I hope you find that the changes in this edition, together with LarsonLinearAlgebra.com, will help accomplish just that.

New To This Edition

NEW LarsonLinearAlgebra.com
This companion website offers multiple tools and resources to supplement your learning. Access to these features is free. Watch videos explaining concepts from the book, explore examples, download data sets and much more.

True or False? In Exercises 85 and 86, determine whether each statement is true or false. If a statement from the text. If a statement is false, provide an example that shows the statement is not true in all cases or cite an appropriate statement from the text.
85. (a) The dot product is the only inner product that can be
defined in R^{n}
(b) A nonzero vector in an inner product can have a norm of zero.
86. (a) The norm of the vector \mathbf{u} is the angle between \mathbf{u} and the positive x-axis.
(b) The angle θ between a vector \mathbf{v} and the projection acute when $a>0$, where $a \mathbf{v}=\operatorname{proj}_{,} \mathbf{u}$.
87. Let $\mathbf{u}=(4,2)$ and $\mathbf{v}=(2,-2)$ be vectors in R^{2} with he inner product $\langle\mathbf{u}, \mathbf{v}\rangle=u_{1} v_{1}+2 u_{2} v^{\prime}$
(a) Show that \mathbf{u} and \mathbf{v} are orthogonal.
(b) Sketch \mathbf{u} and \mathbf{v}. Are they orthogonal in the Euclidean
88. Proof Prove that
$\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2 \mid \boldsymbol{u}\left\|^{2}+2\right\| \mathbf{v} \|^{2}$
for any vectors \mathbf{u} and \mathbf{v} in an inner product space V
89. Proof Prove that the function is an inner product on R^{n}. $\langle\mathbf{u}, \mathbf{v}\rangle=c_{1} u_{1} v_{1}+c_{2} u_{2} v_{2}+\cdots+c_{n} u_{n} v_{n}, \quad c_{i}>0$
90. Proof Let \mathbf{u} and \mathbf{v} be nonzero vectors in an inner product space V. Prove that \mathbf{u} - proju \mathbf{u} is orthogonal to \mathbf{v}.
91. Proof Prove Property 2 of Theorem 5.7: If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in an inner product space V, then $+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$,
92. Proof Prove Property 3 of Theorem 5.7: If \mathbf{u} and \mathbf{v} are vectors in an inner product space V and c is any real
number, then $\langle\mathbf{u}, c \mathbf{v}\rangle=c\langle\mathbf{u}, \boldsymbol{v}\rangle$. mber, then (ux (\mathbf{u}, v)
93. Guided Proof Let W be a subspace of the inner $W^{\perp}=\left\{\mathrm{v} \in V_{i}\langle\mathrm{v}, \mathrm{w}\rangle=0\right.$ fost is a subspace of V.
Getting Started: To prove that W^{\perp} is a subspace of closure conditions for a subspace hold (Theorem 4.5) (i) Find a vector in W^{\perp} to conclude that it is nonempty. (ii) To show the closure of W^{\perp} under addition need to show that $\left\langle\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{w}\right\rangle=0$ for all $\mathbf{w} \in W$ and for any $\mathbf{v}_{1}, \mathbf{v}_{2} \in W^{\perp}$. Use the properties of inner products and the fact that $\left\langle\mathbf{v}_{\mathbf{1}}, \mathbf{w}\right\rangle$ and $\left\langle\mathbf{v}_{2}, \mathbf{w}\right\rangle$ are both zero to show this.
(iii) To show closure under multiplication by a scalar, proceed as in part (ii). Use the properties of inner products and the condition of belonging to W
span of $(1,2,3)$ in $V=R^{3}$
95. Guided Proof Let $\langle\mathbf{u}, \mathbf{v}\rangle$ be the Euclidean inner product on R^{n}. Use the fact that $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{\prime} \mathbf{v}$ to prove a) $\left\langle A^{T} A, V\right\rangle=n$ marrix A and
b) $\left\langle A^{T} A \mathbf{u}, \mathbf{u}\right\rangle=\|A \mathbf{u}\|^{2}$
Getting Started: To prove (a) and (b), make use of both the properties of transposes (Theorem 2.6) and the (i)
(i) To prove part (a), make repeated use of the property (i, ${ }^{2}$) $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} \mathbf{v}$, Property 4 of Theorem 2.6, and Property 4 of Theorem 5.3.
96. CAPSTONE
(a) Explain how to determine whether a function
defines an inner product.
(b) Let \mathbf{u} and \mathbf{v} e vectors in an inner product space V,
such that $\mathbf{v} \neq \mathbf{0}$. Explain how to find the orthogonal
projection of \mathbf{u} onto \mathbf{v}.

Finding Inner Product Weights In Exercises 97-100, find c_{1} and c_{2} for the inner product of R^{2},
$\langle\mathbf{u}, \mathbf{v}\rangle=c_{1} u_{1} v_{1}+c_{2} u_{2} v_{2}$

98.

99.

100.

101. Consider the vectors
$\mathbf{u}=(6,2,4)$ and $\mathbf{v}=(1,2,0)$
from Example 10. Without using Theorem 5.9, show that among all the scalar multiples $c \mathbf{v}$ of the vector , the projection of \mathbf{u} onto \mathbf{v} is the vector clos

REVISED Exercise Sets

The exercise sets have been carefully and extensively examined to ensure they are rigorous, relevant, and cover all the topics necessary to understand the fundamentals of linear algebra. The exercises are ordered and titled so you can see the connections between examples and exercises. Many new skillbuilding, challenging, and application exercises have been added. As in earlier editions, the following pedagogically-proven types of exercises are included.

- True or False Exercises
- Proofs
- Guided Proofs
- Writing Exercises
- Technology Exercises (indicated throughout the text with

Exercises utilizing electronic data sets are indicated by $\boxed{\square}$ and found at CengageBrain.com.

Table of Contents Changes

Based on market research and feedback from users, Section 2.5 in the previous edition (Applications of Matrix Operations) has been expanded from one section to two sections to include content on Markov chains. So now, Chapter 2 has two application sections: Section 2.5 (Markov Chains) and Section 2.6 (More Applications of Matrix Operations). In addition, Section 7.4 (Applications of Eigenvalues and Eigenvectors) has been expanded to include content on constrained optimization.

Trusted Features

気 CalcGiat ${ }^{\circ}$

For the past several years, an independent website-CalcChat.com-has provided free solutions to all odd-numbered problems in the text. Thousands of students have visited the site for practice and help with their homework from live tutors. You can also use your smartphone's QR Code ${ }^{\circledR}$ reader to scan the
 access the solutions.

2 Matrices

Chapter Openers

Each Chapter Opener highlights five real-life applications of linear algebra found throughout the chapter. Many of the applications reference the Linear Algebra Applied feature (discussed on the next page). You can find a full list of the applications in the Index of Applications on the inside front cover.

Section Objectives

A bulleted list of learning objectives, located at the beginning of each section, provides you the opportunity to preview what will be presented in the upcoming section.

Theorems, Definitions, and Properties

Presented in clear and mathematically precise language, all theorems, definitions, and properties are highlighted for emphasis and easy reference.

Proofs in Outline Form

In addition to proofs in the exercises, some proofs are presented in outline form. This omits the need for burdensome calculations.

Discovery

Using the Discovery feature helps you develop an intuitive understanding of mathematical concepts and relationships.

Technology Notes

Technology notes show how you can use graphing utilities and software programs appropriately in the problem-solving process. Many of the Technology notes reference the Technology Guide at CengageBrain.com.

EXAMPLE 4 Finding a Transition Matrix

See LarsonLinearAlgebra.com for an interactive version of this type of example.
Find the transition matrix from B to B^{\prime} for the bases for R^{3} below.
$B=\{(1,0,0),(0,1,0),(0,0,1)\} \quad$ and $\quad B^{\prime}=\{(1,0,1),(0,-1,2),(2,3,-5)\}$ SOLUTION

DISCOVERY

1. Let $B=\{(1,0),(1,2)\}$ and $B^{\prime}=\{(1,0),(0,1)\}$. Form the matrix $\left[\begin{array}{ll}B^{\prime} & B\end{array}\right]$.
2. Make a conjecture about the necessity of using Gauss-Jordan the transition matrix $P-1$ when the change of basis is from a of basis is from a nonstandard basis to
a standard basis.

First use the vectors in the two bases to form the matrices B and B

From this, you can conclude that the transition matrix from B to B^{\prime} is

$$
P^{-1}=\left[\begin{array}{rrr}
-1 & 4 & 2 \\
3 & -7 & -3 \\
1 & -2 & -1
\end{array}\right] .
$$

Multiply P^{-1} by the coordinate matrix of $\mathbf{x}=\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{T}$ to see that the result is the same as that obtained in Example 3.

SOLUTION Notice that three of the entries in t the work in the expansion, use the

$$
|A|=3\left(C_{13}\right)+0\left(C_{23}\right)+0\left(C_{3} \mid\right.
$$

The cofactors C_{23}, C_{33}, and C_{43} have zero coefficients, so you need only find the cofactor C_{13}. To do this, delete the first row and third column of A and evaluate the determinant of the resulting matrix.

Instructor Resources

Media

Instructor's Solutions Manual

The Instructor's Solutions Manual provides worked-out solutions for all even-numbered exercises in the text.

Cengage Learning Testing Powered by Cognero (ISBN: 978-1-305-65806-6)
is a flexible, online system that allows you to author, edit, and manage test bank content, create multiple test versions in an instant, and deliver tests from your LMS, your classroom, or wherever you want. This is available online at cengage.com/login.

Turn the Light On with MindTap for Larson's Elementary Linear Algebra Through personalized paths of dynamic assignments and applications, MindTap is a digital learning solution and representation of your course that turns cookie cutter into cutting edge, apathy into engagement, and memorizers into higher-level thinkers.

The Right Content: With MindTap's carefully curated material, you get the precise content and groundbreaking tools you need for every course you teach.

Personalization: Customize every element of your course-from rearranging the Learning Path to inserting videos and activities.
Improved Workflow: Save time when planning lessons with all of the trusted, most current content you need in one place in MindTap.
Tracking Students' Progress in Real Time: Promote positive outcomes by tracking students in real time and tailoring your course as needed based on the analytics.
Learn more at cengage.com/mindtap.

Student Resources

Print

Student Solutions Manual

ISBN-13: 978-1-305-87658-3
The Student Solutions Manual provides complete worked-out solutions to all odd-numbered exercises in the text. Also included are the solutions to all Cumulative Test problems.

Media

MindTap for Larson's Elementary Linear Algebra

MindTap is a digital representation of your course that provides you with the tools you need to better manage your limited time, stay organized and be successful. You can complete assignments whenever and wherever you are ready to learn with course material specially customized for you by your instructor and streamlined in one proven, easy-to-use interface. With an array of study tools, you'll get a true understanding of course concepts, achieve better grades and set the groundwork for your future courses.
Learn more at cengage.com/mindtap.

CengageBrain.com

To access additional course materials and companion resources, please visit CengageBrain.com. At the CengageBrain.com home page, search for the ISBN of your title (from the back cover of your book) using the search box at the top of the page. This will take you to the product page where free companion resources can be found.

Acknowledgements

I would like to thank the many people who have helped me during various stages of writing this new edition. In particular, I appreciate the feedback from the dozens of instructors who took part in a detailed survey about how they teach linear algebra. I also appreciate the efforts of the following colleagues who have provided valuable suggestions throughout the life of this text:

Michael Brown, San Diego Mesa College
Nasser Dastrange, Buena Vista University
Mike Daven, Mount Saint Mary College
David Hemmer, University of Buffalo, SUNY
Wai Lau, Seattle Pacific University
Jorge Sarmiento, County College of Morris.

I would like to thank Bruce H. Edwards, University of Florida, and David C. Falvo, The Pennsylvania State University, The Behrend College, for their contributions to previous editions of Elementary Linear Algebra.

On a personal level, I am grateful to my spouse, Deanna Gilbert Larson, for her love, patience, and support. Also, a special thanks goes to R. Scott O'Neil.

Ron Larson, Ph.D.
Professor of Mathematics
Penn State University
www.RonLarson.com

1．1 Introduction to Systems of Linear Equations

回
回
回
Recognize a linear equation in n variables．
Find a parametric representation of a solution set．
Determine whether a system of linear equations is consistent or inconsistent．
－
Use back－substitution and Gaussian elimination to solve a system of linear equations．

LINEAR EQUATIONS IN \boldsymbol{n} VARIABLES

The study of linear algebra demands familiarity with algebra，analytic geometry， and trigonometry．Occasionally，you will find examples and exercises requiring a knowledge of calculus，and these are marked in the text．

Early in your study of linear algebra，you will discover that many of the solution methods involve multiple arithmetic steps，so it is essential that you check your work．Use software or a calculator to check your work and perform routine computations．

Although you will be familiar with some material in this chapter，you should carefully study the methods presented．This will cultivate and clarify your intuition for the more abstract material that follows．

Recall from analytic geometry that the equation of a line in two－dimensional space has the form

$$
a_{1} x+a_{2} y=b, \quad a_{1}, a_{2}, \text { and } b \text { are constants. }
$$

This is a linear equation in two variables x and y ．Similarly，the equation of a plane in three－dimensional space has the form

$$
a_{1} x+a_{2} y+a_{3} z=b, \quad a_{1}, a_{2}, a_{3}, \text { and } b \text { are constants. }
$$

This is a linear equation in three variables x, y ，and z ．A linear equation in n variables is defined below．

Definition of a Linear Equation in \boldsymbol{n} Variables

A linear equation in \boldsymbol{n} variables $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ has the form

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots+a_{n} x_{n}=b
$$

The coefficients $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are real numbers，and the constant term b is a real number．The number a_{1} is the leading coefficient，and x_{1} is the leading variable．

Linear equations have no products or roots of variables and no variables involved in trigonometric，exponential，or logarithmic functions．Variables appear only to the first power．

EXAMPLE 1 Linear and Nonlinear Equations

Each equation is linear．
a． $3 x+2 y=7$
b．$\frac{1}{2} x+y-\pi z=\sqrt{2}$
c．$(\sin \pi) x_{1}-4 x_{2}=e^{2}$

Each equation is not linear．
a．$x y+z=2$
b．$e^{x}-2 y=4$
c． $\sin x_{1}+2 x_{2}-3 x_{3}=0$

SOLUTIONS AND SOLUTION SETS

A solution of a linear equation in n variables is a sequence of n real numbers s_{1}, s_{2}, s_{3}, \ldots, s_{n} that satisfy the equation when you substitute the values

$$
x_{1}=s_{1}, \quad x_{2}=s_{2}, \quad x_{3}=s_{3}, \quad \ldots, \quad x_{n}=s_{n}
$$

into the equation. For example, $x_{1}=2$ and $x_{2}=1$ satisfy the equation $x_{1}+2 x_{2}=4$. Some other solutions are $x_{1}=-4$ and $x_{2}=4, x_{1}=0$ and $x_{2}=2$, and $x_{1}=-2$ and $x_{2}=3$.

The set of all solutions of a linear equation is its solution set, and when you have found this set, you have solved the equation. To describe the entire solution set of a linear equation, use a parametric representation, as illustrated in Examples 2 and 3.

EXAMPLE 2 Parametric Representation of a Solution Set

Solve the linear equation $x_{1}+2 x_{2}=4$.

SOLUTION

To find the solution set of an equation involving two variables, solve for one of the variables in terms of the other variable. Solving for x_{1} in terms of x_{2}, you obtain

$$
x_{1}=4-2 x_{2} .
$$

In this form, the variable x_{2} is free, which means that it can take on any real value. The variable x_{1} is not free because its value depends on the value assigned to x_{2}. To represent the infinitely many solutions of this equation, it is convenient to introduce a third variable t called a parameter. By letting $x_{2}=t$, you can represent the solution set as

$$
x_{1}=4-2 t, \quad x_{2}=t, \quad t \text { is any real number. }
$$

To obtain particular solutions, assign values to the parameter t. For instance, $t=1$ yields the solution $x_{1}=2$ and $x_{2}=1$, and $t=4$ yields the solution $x_{1}=-4$ and $x_{2}=4$.

To parametrically represent the solution set of the linear equation in Example 2 another way, you could have chosen x_{1} to be the free variable. The parametric representation of the solution set would then have taken the form

$$
x_{1}=s, \quad x_{2}=2-\frac{1}{2} s, \quad s \text { is any real number. }
$$

For convenience, when an equation has more than one free variable, choose the variables that occur last in the equation to be the free variables.

EXAMPLE 3 Parametric Representation of a Solution Set

Solve the linear equation $3 x+2 y-z=3$.

SOLUTION

Choosing y and z to be the free variables, solve for x to obtain

$$
\begin{aligned}
3 x & =3-2 y+z \\
x & =1-\frac{2}{3} y+\frac{1}{3} z .
\end{aligned}
$$

Letting $y=s$ and $z=t$, you obtain the parametric representation

$$
x=1-\frac{2}{3} s+\frac{1}{3} t, \quad y=s, \quad z=t
$$

where s and t are any real numbers. Two particular solutions are

$$
x=1, y=0, z=0 \quad \text { and } \quad x=1, y=1, z=2 .
$$

REMARK

The double-subscript notation indicates $a_{i j}$ is the coefficient of x_{j} in the i th equation.

SYSTEMS OF LINEAR EQUATIONS

A system of \boldsymbol{m} linear equations in \boldsymbol{n} variables is a set of m equations, each of which is linear in the same n variables:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=b_{3} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}=b_{m} .
\end{gathered}
$$

A system of linear equations is also called a linear system. A solution of a linear system is a sequence of numbers $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ that is a solution of each equation in the system. For example, the system

$$
\begin{aligned}
3 x_{1}+2 x_{2} & =3 \\
-x_{1}+x_{2} & =4
\end{aligned}
$$

has $x_{1}=-1$ and $x_{2}=3$ as a solution because $x_{1}=-1$ and $x_{2}=3$ satisfy both equations. On the other hand, $x_{1}=1$ and $x_{2}=0$ is not a solution of the system because these values satisfy only the first equation in the system.

DISCOVERY

1. Graph the two lines

$$
\begin{aligned}
& 3 x-y=1 \\
& 2 x-y=0
\end{aligned}
$$

in the $x y$-plane. Where do they intersect? How many solutions does this system of linear equations have?
2. Repeat this analysis for the pairs of lines

$$
\begin{aligned}
& 3 x-y=1 \\
& 3 x-y=0
\end{aligned} \quad \text { and } \quad \begin{aligned}
& 3 x-y=1 \\
& 6 x-2 y=2
\end{aligned}
$$

3. What basic types of solution sets are possible for a system of two linear equations in two variables?

See LarsonLinearAlgebra.com for an interactive version of this type of exercise.

It is possible for a system of linear equations to have exactly one solution, infinitely many solutions, or no solution. A system of linear equations is consistent when it has at least one solution and inconsistent when it has no solution.

EXAMPLE 4 Systems of Two Equations in Two Variables

Solve and graph each system of linear equations.
a. $x+y=3$
$x-y=-1$
b. $x+y=3$
$2 x+2 y=6$
c. $x+y=3$
$x+y=1$

SOLUTION

a. This system has exactly one solution, $x=1$ and $y=2$. One way to obtain the solution is to add the two equations to give $2 x=2$, which implies $x=1$ and so $y=2$. The graph of this system is two intersecting lines, as shown in Figure 1.1(a).
b. This system has infinitely many solutions because the second equation is the result of multiplying both sides of the first equation by 2 . A parametric representation of the solution set is

$$
x=3-t, \quad y=t, \quad t \text { is any real number. }
$$

The graph of this system is two coincident lines, as shown in Figure 1.1(b).
c. This system has no solution because the sum of two numbers cannot be 3 and 1 simultaneously. The graph of this system is two parallel lines, as shown in Figure 1.1(c).

a. Two intersecting lines:

$$
\begin{aligned}
& x+y=3 \\
& x-y=-1
\end{aligned}
$$

b. Two coincident lines:

$$
\begin{array}{r}
x+y=3 \\
2 x+2 y=6
\end{array}
$$

c. Two parallel lines:

$$
\begin{aligned}
& x+y=3 \\
& x+y=1
\end{aligned}
$$

Figure 1.1
Example 4 illustrates the three basic types of solution sets that are possible for a system of linear equations. This result is stated here without proof. (The proof is provided later in Theorem 2.5.)

Number of Solutions of a System of Linear Equations

For a system of linear equations, precisely one of the statements below is true.

1. The system has exactly one solution (consistent system).
2. The system has infinitely many solutions (consistent system).
3. The system has no solution (inconsistent system).

SOLVING A SYSTEM OF LINEAR EQUATIONS

Which system is easier to solve algebraically?

$$
\begin{array}{rlrl}
x-2 y+3 z & =9 & x-2 y+3 z & =9 \\
-x+3 y & =-4 & y+3 z & =5 \\
2 x-5 y+5 z & =17 & z & =2
\end{array}
$$

The system on the right is clearly easier to solve. This system is in row-echelon form, which means that it has a "stair-step" pattern with leading coefficients of 1 . To solve such a system, use back-substitution.

EXAMPLE 5 Using Back-Substitution in Row-Echelon Form

Use back-substitution to solve the system.

$$
\begin{aligned}
x-2 y & =5 & & \text { Equation 1 } \\
y & =-2 & & \text { Equation 2 }
\end{aligned}
$$

SOLUTION

From Equation 2, you know that $y=-2$. By substituting this value of y into Equation 1, you obtain

$$
\begin{aligned}
x-2(-2) & =5 & & \text { Substitute }-2 \text { for } y \\
x & =1 . & & \text { Solve for } x .
\end{aligned}
$$

The system has exactly one solution: $x=1$ and $y=-2$.

The term back-substitution implies that you work backwards. For instance, in Example 5, the second equation gives you the value of y. Then you substitute that value into the first equation to solve for x. Example 6 further demonstrates this procedure.

EXAMPLE 6 Using Back-Substitution in Row-Echelon Form

Solve the system.

$$
\begin{aligned}
x-2 y+3 z & =9 & & \text { Equation 1 } \\
y+3 z & =5 & & \text { Equation 2 } \\
z & =2 & & \text { Equation 3 }
\end{aligned}
$$

SOLUTION

From Equation 3, you know the value of z. To solve for y, substitute $z=2$ into Equation 2 to obtain

$$
\begin{aligned}
y+3(2) & =5 & & \text { Substitute } 2 \text { for } z \\
y & =-1 . & & \text { Solve for } y .
\end{aligned}
$$

Then, substitute $y=-1$ and $z=2$ in Equation 1 to obtain

$$
\begin{aligned}
x-2(-1)+3(2) & =9 & & \text { Substitute }-1 \text { for } y \text { and } 2 \text { for } z . \\
x & =1 . & & \text { Solve for } x .
\end{aligned}
$$

The solution is $x=1, y=-1$, and $z=2$.

Two systems of linear equations are equivalent when they have the same solution set. To solve a system that is not in row-echelon form, first rewrite it as an equivalent system that is in row-echelon form using the operations listed on the next page.

Carl Friedrich Gauss (1777-1855)
German mathematician Carl Friedrich Gauss is recognized, with Newton and Archimedes, as one of the three greatest mathematicians in history. Gauss used a form of what is now known as Gaussian elimination in his research. Although this method was named in his honor, the Chinese used an almost identical method some 2000 years prior to Gauss.

Figure 1.2

Operations That Produce Equivalent Systems

Each of these operations on a system of linear equations produces an equivalent system.

1. Interchange two equations.
2. Multiply an equation by a nonzero constant.
3. Add a multiple of an equation to another equation.

Rewriting a system of linear equations in row-echelon form usually involves a chain of equivalent systems, using one of the three basic operations to obtain each system. This process is called Gaussian elimination, after the German mathematician Carl Friedrich Gauss (1777-1855).

EXAMPLE 7 Using Elimination to Rewrite a System in Row-Echelon Form

See LarsonLinearAlgebra.com for an interactive version of this type of example.
Solve the system.

$$
\begin{aligned}
x-2 y+3 z & =9 \\
-x+3 y & =-4 \\
2 x-5 y+5 z & =17
\end{aligned}
$$

SOLUTION

Although there are several ways to begin, you want to use a systematic procedure that can be applied to larger systems. Work from the upper left corner of the system, saving the x at the upper left and eliminating the other x-terms from the first column.

$$
\begin{aligned}
x-2 y+3 z & =9 \\
y+3 z & =5 \\
2 x-5 y+5 z=17 & \longleftarrow \\
x-2 y+3 z= & \begin{array}{l}
\text { Adding the first equation to } \\
\text { the second equation produces } \\
\text { a new second equation. }
\end{array} \\
y+3 z=5 & \begin{array}{l}
\text { Adding }-2 \text { times the first } \\
\text { equation to the third equation }
\end{array} \\
-y-z=-1 & \longleftarrow \text { produces a new third equation. }
\end{aligned}
$$

Now that you have eliminated all but the first x from the first column, work on the second column.

$$
\begin{array}{rlrl}
x-2 y+3 z & =9 & & \begin{array}{l}
\text { Adding the second equation to } \\
\text { the third equation produces }
\end{array} \\
y+3 z & =5 & \longleftarrow & \text { a new third equation. } \\
2 z & =4 & & \\
x-2 y+3 z & =9 & \begin{array}{l}
\text { Multiplying the third equation } \\
\text { by } \frac{1}{2} \text { produces a new third }
\end{array} \\
y+3 z & =5 & \text { equation. }
\end{array}
$$

This is the same system you solved in Example 6, and, as in that example, the solution is

$$
x=1, \quad y=-1, \quad z=2
$$

Each of the three equations in Example 7 represents a plane in a three-dimensional coordinate system. The unique solution of the system is the point $(x, y, z)=(1,-1,2)$, so the three planes intersect at this point, as shown in Figure 1.2.

Many steps are often required to solve a system of linear equations, so it is very easy to make arithmetic errors. You should develop the habit of checking your solution by substituting it into each equation in the original system. For instance, in Example 7, check the solution $x=1, y=-1$, and $z=2$ as shown below.

Equation 1: $\quad(1)-2(-1)+3(2)=9 \quad$ Substitute the solution
Equation 2: $-(1)+3(-1) \quad=-4 \quad$ into each equation of the
Equation 3: $2(1)-5(-1)+5(2)=17 \quad$ original system.
The next example involves an inconsistent system-one that has no solution. The key to recognizing an inconsistent system is that at some stage of the Gaussian elimination process, you obtain a false statement such as $0=-2$.

EXAMPLE 8 An Inconsistent System

Solve the system.

$$
\begin{array}{rr}
x_{1}-3 x_{2}+x_{3}= & 1 \\
2 x_{1}-x_{2}-2 x_{3}= & 2 \\
x_{1}+2 x_{2}-3 x_{3}= & -1
\end{array}
$$

SOLUTION

$$
\begin{aligned}
x_{1}-3 x_{2}+x_{3} & =1 & & \begin{array}{l}
\text { Adding }-2 \text { times the first } \\
\text { equation to the second equation } \\
\text { produces a new second equation. }
\end{array} \\
x_{1}+4 x_{3} & =0 & x_{2}-3 x_{3} & =-1
\end{aligned} \begin{array}{ll}
\text { produs } \\
x_{1}-3 x_{2}+x_{3} & =1 \\
5 x_{2}-4 x_{3} & =0 \\
5 x_{2}-4 x_{3} & =-2
\end{array} \begin{aligned}
& \text { Adding }-1 \text { times the first } \\
& \text { equation to the third equation } \\
& \text { produces a new third equation. }
\end{aligned}
$$

(Another way of describing this operation is to say that you subtracted the first equation from the third equation to produce a new third equation.)

$$
\begin{array}{rlrl}
x_{1}-3 x_{2}+x_{3} & =1 & & \text { Subtracting the second equation } \\
5 x_{2}-4 x_{3} & =0 & & \text { from the third equation produces } \\
0 & =-2 & \text { a new third equation. }
\end{array}
$$

The statement $0=-2$ is false, so this system has no solution. Moreover, this system is equivalent to the original system, so the original system also has no solution.

As in Example 7, the three equations in Example 8 represent planes in a three-dimensional coordinate system. In this example, however, the system is inconsistent. So, the planes do not have a point in common, as shown at the right.

This section ends with an example of a system of linear equations that has infinitely many solutions. You can represent the solution set for such a system in parametric form, as you did in Examples 2 and 3.

EXAMPLE 9 A System with Infinitely Many Solutions

Solve the system.

$$
\begin{aligned}
x_{2}-x_{3} & =0 \\
-3 x_{3} & =-1 \\
x_{1} & =1 \\
-x_{1}+3 x_{2} & =1
\end{aligned}
$$

SOLUTION

Begin by rewriting the system in row-echelon form, as shown below.

$$
\begin{aligned}
& \begin{aligned}
x_{1} \quad-3 x_{3} & =-1 \\
x_{2}-x_{3} & =0
\end{aligned} \longleftarrow \begin{array}{l}
\text { Interchange the first } \\
\text { two equations. }
\end{array} \\
& -x_{1}+3 x_{2}=1 \\
& x_{1} \quad-3 x_{3}=-1 \\
& x_{2}-x_{3}=0 \\
& 3 x_{2}-3 x_{3}=0 \\
& x_{1} \quad-3 x_{3}=-1 \\
& x_{2}-x_{3}=0 \\
& 0=0 \\
& \text { Adding the first equation to the } \\
& \text { third equation produces a new } \\
& \text { third equation. } \\
& \text { Adding - } 3 \text { times the second } \\
& \text { equation to the third equation } \\
& \text { eliminates the third equation. }
\end{aligned}
$$

The third equation is unnecessary, so omit it to obtain the system shown below.

$$
\begin{aligned}
x_{1} & -3 x_{3}
\end{aligned}=-190
$$

To represent the solutions, choose x_{3} to be the free variable and represent it by the parameter t. Because $x_{2}=x_{3}$ and $x_{1}=3 x_{3}-1$, you can describe the solution set as $x_{1}=3 t-1, \quad x_{2}=t, \quad x_{3}=t, \quad t$ is any real number.

DISCOVERY

1. Graph the two lines represented by the system of equations.

$$
\begin{aligned}
x-2 y= & 1 \\
-2 x+3 y & =-3
\end{aligned}
$$

2. Use Gaussian elimination to solve this system as shown below.

$$
\begin{aligned}
x-2 y & =1 \\
-1 y & =-1 \\
x-2 y & =1 \\
y & =1 \\
x & =3 \\
y & =1
\end{aligned}
$$

Graph the system of equations you obtain at each step of this process. What do you observe about the lines?
See LarsonLinearAlgebra.com for an interactive version of this type of exercise.

